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Abstract—The accurate estimation of pose and velocity of an
autonomous underwater vehicle (AUV) is critical to ensure the
repeatability and validity of scientific data that is captured using
sensors onboard the AUV. A low-cost and effective way is by
using stereo camera sensors to perform visual odometry (VO).
However, this is a difficult problem in underwater due to poor
imaging condition and inconsistent motion caused by water flow.
This paper proposes a robust and effective stereo underwater
VO system that can overcome aforementioned difficulties and
accurately localize the AUV. Experimental results demonstrate
that the proposed pipeline outperforms existing VO systems
in underwater environment, as well as obtains a comparative
performance on the KITTI benchmark dataset.

I. INTRODUCTION

In recent years, the demand for exploration in underwater
environment using autonomous underwater vehicle (AUV) is
constantly increasing. Positioning sensors such as Doppler Ve-
locity Logs (DVL) or acoustic transponders like long baseline
system (LBL) and ultra short baseline system (USBL) are
sometimes used in localizing AUVs . Although these methods
can provide accurate pose estimation, they are very expensive
and not easy to integrated or deployed in many cases.

A cost effective alternative is to use visual sensors and
perform visual odometry (VO). This technique is becoming
popular in computer vision and robotics [1]–[3], and provides
a low-cost and effective solution to estimate the robot tra-
jectory. Nevertheless, this becomes comparatively challenging
in underwater environment due to the following issues: a)
As is shown in Fig.3, the imaging conditions in water are
poor due to light attenuation, poor/artificial illumination, haze
and scattering. When the AUV operates in shallow waters,
scattering of the sun light is highly problematic. b) Motion
blur can also be present and is due to motion of the robot
while the camera shutter is open. c) The vehicle/camera’s
motion is inconsistent with oscillation, especially in shallow
underwater area, due to the water waves. All these problems
greatly increases the difficulty in estimating the robot location.

In this paper, we intensively test and evaluate possible
solutions of the mentioned problems, and propose a stereo
underwater VO system that is able to robustly and accurately
localize the AUV. Our system is built upon a popular visual-
based localization system in robotics called ORB-SLAM2 [1].
We carefully modified this system to accommodate the above

mentioned challenging conditions and we demonstrate that
the proposed pipeline outperforms existing VO systems in
underwater environment.

II. RELATED WORK

Using a set of image sequence from camera sensor, visual
odometry seeks to incrementally estimate the motion of the
vehicle from visual information of the environment. A VO
system mainly refers to an open loop estimation of the
robot location, in comparison to simultaneous localization and
mapping (SLAM) which integrates loop-closure. According to
different formulations, VO methods can be divided into two
categories: feature-based methods [1], [4] based on detecting
salient features in the images and, direct [3] or semi-direct [2]
methods, which directly estimate motion using all or patches
of the pixels in the image. The standard pipeline of feature-
based methods consist of extracting sparse salient features
in each image, matching them in successive frames using
invariant feature descriptors, and then recovering the structure
and camera motion using Epipolar geometry. Feature-based
methods are robust to brightness inconsistencies and large
view-point changes among consecutive frames. Nevertheless,
feature extraction and matching bring considerable computa-
tional cost. Besides, few features can be extracted and matched
in low-texture and blurring scenes, which may result in losing
track easily. Direct methods, on the other hand, estimate
structure and motion directly from intensity values in the
image. One significant advantage of direct methods is that
they can perform relatively dense 3D reconstruction, because
more image information is used in tracking. However, they
become unstable in rapid light changing environment, as the
brightness constancy assumption does not always hold.

Current state-of-the-art VO methods work effectively under
certain conditions such as, smooth motion, static scene, good
illumination and rich texture, etc. However, most of these
conditions can not be met in the underwater case, which
results in either large drift or complete failure in trajectory
estimation when using off-the-shelf VO systems. In [5], the
authors compare different open-source VO solutions in differ-
ent environments, including underwater reefs and shipwrecks.
From their results, we can see that direct VO methods do not
work in underwater, while feature-based methods are relatively



more consistent on equal conditions. The results make sense
because direct methods estimate motion via minimizing the
photometric error which is significantly influenced by poor
imaging conditions and the scattering phenomena in under-
water, while feature-based method use feature descriptors that
are robust to the change in perspective and illumination. In
our work, therefore, we choose to develop a feature-based VO
system.

A standard feature-based visual odometry pipeline consists
of three main steps: feature extraction, feature association
(matching) and motion estimation. In the feature extraction
step, salient keypoints are detected in the image, and for each
detected keypoint, a compact descriptor is extracted, which can
be used to match against others. In feature-based VO task,
features like Scale-Invariant Feature Transform (SIFT) [6],
Speed Up Robust Feature (SURF) [7] and Oriented FAST
and Rotated BRIEF (ORB) [8] are widely used. Extensive
comparison experiments have been conducted on these fea-
tures literarily [9], while few work has evaluated them in
underwater environment with visual odometry task [10]–[12].
In this paper, therefore, we experimentally compare these
features to see which solution is best for performing under-
water visual odometry. During the feature association step,
corresponding features between consecutive image frames are
searched by comparing their feature descriptors. Brute-force
search is a straightforward method to find the correspondences
with high accuracy. However, it requires high time-cost if the
candidate number is high. Another widely-used approach is
FLANN [13], which is fast and relatively accurate, but it is
not robust enough if there is high similarity in the detected
features. In visual odometry application, an effective way to
do feature matching is making use of the previous motion
model to predict an approximate feature projecting location
and narrow the search area. However, it is prone to fail in
underwater environment due to the inconsistent motion. In this
paper, we make use of all the four stereo images: current left,
right and previous left, right frames and perform a loop search
to find the matchings. The proposed matching algorithm is
not only fast and accurate, but also robust against inconsistent
motion. Motion estimation is the core step in a VO system.
In this step, the camera motion between the current and the
previous frame is computed. This is normally treated as the
Perspective-n-Point (PnP) problem that retrieves the camera
motion with respect to a scene object from n 2D-3D point
correspondences [14], [15]. In order to robustly estimate the
motion, a standard approach consists of first using P3P in a
RANSAC scheme [16] to remove the outliers, and then PnP on
all remaining inliers. Similarly, in our VO pipeline, for each
new coming frame, an initial motion is acquired using P3P
[17] with RANSAC, then a non-linear optimization for all the
inliers is applied to refine the final solution.

III. ALGORITHM

The state-of-the-art ORB-SLAM2 VO pipeline failed to
work with our underwater datasets due to the challenging
problems discussed in Section I, see Fig.5(a). We thereby

Fig. 1: The visual odometry pipeline of ORB-SLAM2 (left)
and ours (right).

carefully evaluate and modified it as follows. Fig.1 shows
our visual odometry pipeline in comparison with the VO part
of ORB-SLAM2. In the feature extraction, we experimentally
compare three state-of-the-art feature techniques, and find the
optimal solution that is most robust against challenging image
condition to conduct underwater visual odometry. Inconsistent
motion is handled by two techniques in feature association and
motion estimation, respectively: a) Instead of using constant
motion model (in frame-to-frame tracking) to match features,
we propose an effective circular search between current left,
right and previous left, right frames (Quad matching) to find
the matchings. Our Quad matching approach is simple, fast
and not affected by unpredictable motion. b) Rather than
directly optimizing (motion-only Bundle Adjustment) with
motion model as initial value, we perform a simple pose
estimation from 2D to 3D correspondences (P3P) [17] with
RANSAC to get an initial pose for each new camera frame.

Algorithm.1 presents the pseudo code of our proposed VO
pipeline. The algorithm inputs the stereo images sequence I
and outputs the camera poses C in the world coordinate system.
For each incoming stereo frame {lIi, rIi}, feature extraction
(denoted as Φ) is performed with keypoints {lPi,

rPi} and
their descriptors {lDi,

rDi} as outcome, which are then used
to perform stereo matching (Ms) via Epipolar search. The
first frame is initialized as the world coordinate frame and an
initial map Li = L is created with all the stereo matchings
M s

i via back-projection (Π−1). The map L is maintained and
updated in our pipeline for the purpose of performing Local
Bundle Adjustment (LBA). Furthermore, the LBA process is
used in outlier rejection process by removing the points with
high reprojection error.

Except for the initialization, as shown in step 9-10, we do
not use all the stereo matchings M s

i to find the temporal
matchings M t

i−1,i. Instead, only the union set of 1) Li−1 ∈ L,
the 3D landmarks that can be found in frame Ii−1, and 2) a set
of new back-projected 3D landmarks Ltemp from Ii−1, whose
depth uncertainty are lower than a preset depth threshold dth.
In this way, only reliable 3D landmarks are used and the
motion estimation is more robust and accurate.

The selected landmarks and their corresponding features
in Ii−1 are used to find their matchings in Ii via Quad
matching (Mq). Fig.2 and Algorithm.2 illustrates the details



Algorithm 1 Propose Visual Odometry Pipeline

Require: I = {lI1, rI1, ..., lIn, rIn}
Ensure: C = {Cw

1 , ...,Cw
n }

1: for i = 1; i <= n; i++ do
2: {lPi,

lDi} = Φ{lIi}, {rPi,
rDi} = Φ{rIi};

3: M s
i =Ms{lPi,

lDi,
rPi,

rDi};
4: if i = 1 then
5: Cw

i = eye(4, 4);
6: Li = Π−1{M s

i ,K,Cw
i };

7: continue;
8: else
9: Ltemp = Π−1{M s

i−1, dth,K,Cw
i−1};

10: Li−1 = Li−1 ∪Ltemp;
11: end if
12: {M t

i−1,i,Li} =Mq{Li−1,Di−1,Di,M
s
i−1,M

s
i };

13: {Cw
i ,Li} = Θ{M t

i−1,i,Li,Pi};
14: {Cw

i ,Li} = Ψ{M t
i−1,i,Li,Pi};

15: end for
16: return C ;

Algorithm 2 Quad Matching
Require: :

1: M s
i−1 = {ms

i−1,j |ms
i−1,j = {lpi−1,j ,

rpi−1,j}} Stereo
matchings in Ii−1;

2: M s
i = {ms

i,j | ms
i,j = {lpi,j ,

rpi,j}} Stereo matchings
in Ii;

Ensure: M t
i−1,i : Temporal matchings between Ii−1 and Ii

frames;
3: for each ms

i−1,j = {lpi−1,j ,
rpi−1,j} ∈M s

i−1 do
4: Sl = Sw{lIi},Sr = Sw{rIi};
5: lp∗

i,j={lpi,j ∈ Sl | Ddist(
lpi,j ,

lpi−1,j) is min}
6: rp∗

i,j={rpi,j ∈ Sr | Ddist(
rpi,j ,

rpi−1,j) is min};
7: if ∗ms

i,j = (lp∗
i,j ,

rp∗
i,j) ∈M s

i then
8: M t

i−1,i ← {ms
i−1,j ,

∗ms
i,j};

9: end if
10: end for
11: return M t

i−1,i ;

of Quad matching, which is the implementation of line 12
in Algorithm.1. For each frame step, stereo matchings are
computed by Epipolar line search. Then each keypoint of
stereo matchings in previous left and right frame perform a
window search (Sw) in current left and right frame to get their
optimal matchings by comparing their descriptor distances
(Ddist), respectively. If their optimal match happens to be
the stereo match in the current frame, these four keypoints are
accepted as a set of quad matchings.

At the end of the loop (lines 13 and 14 in Algorithm.1),
a P3P estimation with RANSAC (Θ) is performed to get an
initial pose and inliers, and then a non-linear optimization (Ψ)
is applied to refine the pose with all the inliers, which is based
on Levenberg−Marquardt method implemented in g2o [18].

In comparison, the VO pipeline in ORB-SLAM2 is demon-
strated in Algorithm.3, where the differences can be sum-

Fig. 2: Sketch map of our Quad matching method.

marized as follows: 1) During initialization, as no motion
has been recovered yet, Bag-of-Words (BoW) matching [19]
(Mb) is utilized in the first two frame to accomplish feature
association in ORB-SLAM2 (Note that the details of BoW
construction are omitted for simplification), see step 12-14
of Algorithm.2, however, it is unnecessary in our proposed
pipeline. 2) In the temporal matching step, a coarse current
camera position is calculated using motion model T , then
the temporal matchings are found by projecting the selected
landmarks Li−1 into current frame Ii and search locally
(Mp). Nevertheless, this becomes invalid in underwater en-
vironment because of the motion inconsistency. Instead of
this, we propose an effective Quad matching approach to find
the correspondences, which is robust to unpredictable motion.
3) Only non-linear optimization is performed to recover the
camera position. In this case, the result is easily affected by the
initial value, i.e., coarse result computed from constant motion
model. If the motion model is not reliable, the optimization
may not get the optimal solution or even end up with failure.
This has been observed from our experiment that only by
optimization the system loses track easily.

IV. DATASET

In this paper, two underwater datasets will be tested and
evaluated. One of them we call it as Underwater Coral Dataset,
which is a stereo video sequence dataset that is captured
manually over the undersea coral reef using a stereo Gopro
rig. The video contains 2500 frames of image size 1920x1080.
It starts at one marked place, and heads forward for around
60 meters to another marked spot, then turns back to its
starting point. As is shown in Fig.3(a), this dataset is affected
by certain level of hazing, and most of the images are half
invisible because of the camera viewing angle. The most
challenging part of this dataset is the inconsistent motion in
most of the frames due to the shallow water waves, which not
only results in motion blur that affects the feature extraction



Algorithm 3 Visual Odometry pipeline in ORB-SLAM2

Require: I = {lI1, rI1, ..., lIn, rIn}
Ensure: C = {Cw

1 , ...,Cw
n }

1: for i = 1; i <= n; i++ do
2: {lPi,

lDi} = Φ{lIi}, {rPi,
rDi} = Φ{rIi};

3: M s
i =Ms{lPi,

lDi,
rPi,

rDi};
4: if i = 1 then
5: Cw

i = eye(4, 4);
6: Li = Π−1{M s

i ,K,Cw
i };

7: continue;
8: else
9: Ltemp = Π−1{M s

i−1, dth,K,Cw
i−1};

10: Li−1 = Li−1 ∪Ltemp;
11: end if
12: if i = 2 then
13: {M t

i−1,i,Li} =
Mb{Li−1,Di−1,Di,M

s
i−1,M

s
i };

14: {Cw
i ,T ,Li} = Ψ{M t

i−1,i,Li,Pi}
15: else
16: Cw

i = T ·Cw
i−1;

17: {M t
i−1,i,Li} =

Mp{Li−1,C
w
i ,Di−1,Di,M

s
i−1,M

s
i };

18: {Cw
i ,T ,Li} = Ψ{M t

i−1,i,Li,Pi};
19: end if
20: end for
21: return C ;

and matching, but also makes any motion model assumption
fail.

The other dataset is the Underwater Shipwreck Dataset [5]
that is also a stereo dataset of capturing around an underwater
shipwreck by a stereo Gopro rig. This video (totally 1800
frames of image size 1920x1080) starts at the front of the
shipwreck, and circles around it for a lap. The camera motion
in this dataset is relatively smooth comparing to Underwater
Coral Dataset and only in some parts of the image sequence
are encountered with severe shaking. Nevertheless, the big
obstacle in this dataset is the poor imaging condition that is
caused by the turbid water and light attenuation, leading to
only a limited number of valid features being detected and
tracked in every frame.

V. FEATURE EVALUATION

In the underwater environment, feature should be carefully
selected to be robust against poor illumination, haze and
scattering. SIFT [6] feature is one of the highest quality feature
descriptors due to its strong invariance to scale, rotation,
illumination change and noise. However, it requires a large
computational complexity which is a major drawback for real-
time applications such as visual odometry. SURF [7] feature,
which is an approximation of SIFT, performs faster than
SIFT without reducing much quality of the detected points.
Alternatively, ORB [8] is another efficient choice, which is a
binary descriptor requiring less complexity but is still highly
distinctive.

(a)

(b)

Fig. 3: Selected typical sample images of (a) the Underwater
Coral Dataset and (b) the Underwater Shipwreck Dataset.

TABLE I: COMPARISON OF AVERAGE INLIER NUMBER
OBTAINED BY THREE FEATURE TECHNIQUES.

Feature Techniques SIFT SURF ORB Mean Value

Coral Dataset 128 169 134 144

Shipwreck Dataset 126 129 119 125

To see their performance on underwater images, we tested
the three feature techniques on our visual odometry pipeline,
separately. To be more precise, in our pipeline, FAST [20]
corners at 8 scale levels are detected uniformly distributed on
the image. To ensure that enough features are obtained to track
the camera, we set the number of detected features to 6000
per image (in size 1920x1080) in both underwater datasets due
to the bad imaging quality. At the same time, SIFT, SURF
and ORB descriptors are extracted from these corners for
comparison. In addition, subpixel correlation, orientation and
scale consistency are also considered during the matching step.

Their performance is evaluated by comparing the number
of matched inliers, which are obtained after the camera pose
between subsequent frames is estimated using the matchings
found by each type of descriptor. This is reasonable because,
by getting more inliers, the accuracy of pose estimation is
higher. Table.I presents the average inlier number acquired



(a)

(b)

Fig. 4: Comparison of inliers number among the three feature
techniques in (a) the Underwater Coral Dataset and (b) the
Underwater Shipwreck Dataset, where the vertical axis refers
to inlier number, and the horizontal axis refers to frame index.

by the tested features on both underwater datasets, which
intuitively show that SURF techniques outperforms the other
two, especially in the Underwater Coral Dataset. We thereby
choose SURF technique to extract feature descriptor. From
the mean values between datasets, we can see that the Coral
Dataset obtains approximately 15% more inliers than that of
the Shipwreck Dataset. This accounts for the truth that the
imaging condition in Shipwreck Dataset is poorer and less
valid features can be used to track.

A more detailed histogram distribution of the inlier number
is demonstrated in Fig.4, which reflects the characters of both
datasets. Specifically, for instance, in (a) there are less inliers
at the beginning and towards the end, because the camera is
heading forward and most of the scene during that time is half
visible, while in the middle frames (1000-1500) the inliers
increase, as the camera is down-looking at the ground and
taking a turn, so more features can be detected and tracked.
In (b), for another example, the frames between 600 and
1000 gets lowest inliers among the whole sequence, when the
camera is approaching the stern and turning back. There is
little structure in the scene to be tracked in this area. That
is why the drift grows quickly during that time, as shown in
Fig.6(b).

VI. RESULTS

We first show the result of our system performing visual
odometry task on the Underwater Coral Dataset. As is il-

(a)

(b)

Fig. 5: (a) Camera trajectory (red) and the 3D structure (green)
produced by our proposed method. (b) Comparison of trajec-
tories generated by our proposed method (red), LIBVISO2
(yellow) and ORB-SLAM2 (cyan).

lustrated in Fig.5(a), our method can successfully recover
the whole camera trajectory, which is very close to the real
trajectory, as well as the 3D structure. The tracking time is
around 2.8 seconds per frame when run on an i7 quad-core
2.5Ghz laptop. This is mainly because of the high amount
of feature extraction and matching. This can be improved by
employing a GPU-based parallel implementation and achieve
real-time performance.

We also compared our method with two state of the
art VO systems: LIBVISO2 [4] and ORB-SLAM2 [1]. For
comparison, We remove the loop closure module (including
Global Bundle Adjustment) in ORB-SLAM2 to make it a pure
visual odometry system. Besides, we set all the shared same
parameters in our method and ORB-SLAM2 as the same, and
the parameters in LIBVISO2 are kept as the default setup.
Fig.5(b) shows that LIBVISO2 succeeds to run the whole
dataset, but it introduces large drift. ORB-SLAM2 can only
survive the first 60 frames (Fig.5(b), cyan color), and even
with reset, it loses track quickly.

In order to evaluate the proposed VO, we also tested the
three methods on the KITTI benchmark dataset [21], which
has ground truth trajectories. Table.II demonstrates the quan-
tity results (Relative Pose Error [22]) of the three methods, and
Fig.7 shows the absolute trajectories compared with the ground
truth trajectory. It can be seen that our proposed method
has comparable performance with original version of ORB-
SLAM2 and the ground truth.

In addition, Fig.6(a) shows the whole trajectory and the 3D
structure generated from the challenging Underwater Ship-
wreck Dataset using our proposed method. We can see that
drift accumulates all along the way, especially when the
camera takes a turn and comes back from the stern. Fig.6(b)
reveals the inlier distribution along the trajectory. This result
intuitively shows the the drift correlates closely with the inlier
number. As an example, at the end of the turn (see the black



TABLE II: COMPARISON OF TRANSLATION (meter) AND ROTATION (degree) RMSE IN KITTI DATASET.

Method Sequence 00 01 02 03 04 05 06 07 08 09 10

Proposed
R 0.6195 0.2330 0.2019 0.0846 0.0704 0.1881 0.1267 0.1485 0.1413 0.1259 0.1316

t 0.2083 8.8563 0.1908 0.1047 0.1395 0.0923 0.0995 0.0927 0.3410 0.1534 0.1179

ORB-SLAM2
R 0.6196 0.1318 0.2048 0.0891 0.0696 0.1987 0.1303 0.1539 0.1410 0.1318 0.1355

t 0.2032 0.4546 0.1933 0.1106 0.1234 0.0947 0.0938 0.0909 0.3424 0.1656 0.1134

LIBVISO2
R 0.6471 0.2883 0.2384 0.1404 0.1596 0.2512 0.2251 0.2513 0.2149 0.2023 0.1831

t 0.1941 3.2146 0.1810 0.1185 0.1715 0.1024 0.1199 0.0830 0.3415 0.1694 0.1076

(a)

(b)

Fig. 6: (a) Camera trajectory (red) and the 3D structure (green)
for the shipwreck dataset, produced by our proposed method.
(b) Color bar showing the distribution of inlier number on the
whole trajectory.

bounding box), where the inlier numbers are lower, the drift
of the rotation becomes larger.

VII. EXTRA EXPERIMENT

In our pipeline, we implement an extra experiment that try
to improve the turbid image quality before feature extrac-
tion, and expect that more reliable features can be extracted
to estimate motion. Many image enhancement or dehazing

methods have been proposed to tackle this problem. Here, we
select three state-of-the-art methods to compare and evalu-
ate how enhancing or dehazing techniques would affect the
visual odometry task. Concretely, Contrast-limited adaptive
histogram equalization (CLAHE) [23] is a widely-used image
contrast enhancement algorithm, which divides the images into
regions and performs local histogram equalization (HE) and
reduces noise by partially reducing the local HE. Underwater
images and videos enhancement by fusion (FUSION) [24]
is a fusion-based framework that blends different filters to
enhance underwater images. Dark Channel Prior Dehazing
(DCPD) [25] is based on a kind of statistics of the haze-
free outdoor images called dark channel prior. Together with
haze imaging model, the thickness of the haze can be directly
calculated and finally a high quality haze-free image can be
recovered.

Fig.8 shows a comparison of enhancement results on both
underwater datasets. Qualitatively, all the tested algorithms
have improved the visibility at different levels, compared with
the original image. More precisely, results of CLAHE and
FUSION are brighter and have larger visible regions, i.e., far
away unclear structure becomes more clear. On the contrary,
the luminance becomes lower when applying DCPD, and not
much visibility improvement is obtained, but the structure
details become finer.

To evaluate their performance on visual odometry, they are
all applied to test our VO pipeline on both underwater datasets,
separately. Note that FUSION and DCPD fails to work on
the Underwater Shipwreck Dataset, so only the CLAHE is
compared with the default in this dataset. Similar to feature
techniques comparison, the inlier number obtained in each
frame are used as a comparable index. Fig.9 illustrates the
comparison of inlier number distribution. It can be observed
from (a) that, in some parts of the dataset (for instance, 1-
250, 251-500, etc.), CLHAE and FUSION have increased the
average inlier number, but in some other parts, they got even
much less inliers than the original (501-750,etc.). Similar trend
can be observed in (b) as well. This suggests that certain level
of noise has been introduced when the image is enhanced using
the surveyed methods.

Table.III demonstrates the average values of the whole se-
quence. In particular, the average match number drops slightly
after enhancement. This means that less extracted features are
qualified to be chosen in our matching procedure despite the
fact that the scene visibility has been improved by enhance-



(a) KITTI-00 (b) KITTI-05

(c) KITTI-08 (d) KITTI-09

Fig. 7: Trajectory results on part of the selected sequences due to limited space.

ment. So enhancement measure should have introduced certain
level of noise to the image and brought negative effect on the
completeness and uniqueness in feature descriptor. Overall,
the results reveal the fact that none of the approaches has
significant contribution to the visual odometry task, though
they do increase the image visibility in accordance with the
human’s observing experience.

VIII. CONCLUSIONS

In this paper, we introduced a robust and effective stereo
underwater VO system that can accurately recover the camera
motion. We carefully analyze each part of our visual odom-
etry system, including image restoration, feature extraction
and matching, motion estimation, to explore possibility of
improvement on the system in underwater environment. Ex-
perimental results indicate that our system helps to achieve
excellent performance in localizing the camera in underwa-
ter and obtains satisfactory results in the KITTI benchmark

TABLE III: COMPARISON OF QUANTITY RESULTS TO-
WARDS DIFFERENT ENHANCEMENT METHODS.

Underwater Coral Dataset

Enhancement Techniques Oiginal CLAHE FUSION DCPD

Average Match Number 242 237 224 219

Average Inlier Number 135 134 129 123

Average Inlier Rate 0.5425 0.5538 0.5613 0.5429

Underwater Shipwreck Dataset

Enhancement Techniques Original CLAHE

Average Match Number 257 237

Average Inlier Number 135 131

Average Inlier Rate 0.5253 0.5527



Fig. 8: Comparison of different image enhancement algo-
rithms. (a) Original image. (b) Enhanced by CLAHE. (c)
enhanced by FUSION. (d) Enhanced by DCPD.

dataset by comparing to the state-of-the-art and the ground
truth.

Nevertheless, there are problems that remain to be solved.
One of them is how to improve the underwater image quality
for underwater visual odometry. The goal should be to increase
the number of valid corners to be detected, simultaneously
preserve the completeness of their features and avoid the
increase of noise. Many image enhancement or dehazing
methods has been proposed and some are special designed for
underwater environment. But our experiment results has shown
that most of them are not able to help effectively improving
the VO task. In the future we plan to look into this specific
problem and explore for an efficient solution.
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Fig. 9: Comparison of inliers number among the enhancement
methods in (a) the Underwater Coral Dataset and (b) the
Underwater Shipwreck Dataset, where the vertical axis refers
to inlier number, and the horizontal axis refers to frame index.
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