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Abstract
Motion segmentation is a fundamental problem in
dynamic scene understanding. Although it has been
a long-term studied topic, motion segmentation is
still not successfully applied in real-life challenging
scenarios, such as autonomous or assistant driving.
Based on such consideration, this paper proposes
a robust solution to motion segmentation for urban
driving scenes, by addressing two main challenges
which are not fully explored in previously proposed
algorithms: (1) detect, segment and track motions
simultaneously without prior knowledge of feature
trajectories or number of motions but with the help
of semantic scene labeling (2) provide a robust so-
lutions in strong perspective scenes with occlusion,
by formulating the problem using a novel motion
model of dynamic points used in the re-projection
error minimization within a stereo/RGB-D setup.
The proposed approach is carefully evaluated on
the virtual KITTI dataset with ground truth, and
tested on the real KITTI dataset.

1 Introduction
Motion segmentation remains as one of the fundamental chal-
lenges in computer vision and robotics. It is a key component
for many robotic tasks such as dynamic scene reconstruction,
navigation and path planning in dynamic environments and
simultaneous localization and tracking of multiple objects.
Applications such as autonomous vehicles, augmented real-
ity and assistive driving can benefit from accurate and robust
motion segmentation. In particular, motion segmentation in
autonomous driving must be robust, accurate and work prop-
erly in a wide range from close to far.

Significant research effort has been made in motion seg-
mentation in past two decades. Earlier proposed methods
in the literature can be divided into two categories, methods
based on affine assumption and those based on Epipolar ge-
ometry. Affine methods [1–3] assume that each individual
rigid motion across multiple frames lies in an affine or lin-
ear subspace. This type of problem can be effectively solved

by factorization or subspace clustering frameworks. Never-
theless, affine-based algorithms have several issues, among
which is the inability to deal with perspective effects. This
drawback heavily restricts their performance in motion seg-
mentation in outdoor scenarios, in particular in autonomous
or assistant driving applications. Another drawback is their
requirement of full-length feature trajectories, which impedes
them to handle real scenarios with objects entering into or
leaving the field of view, and temporary occlusion. Finally, in
this methods, the number of motions is normally assumed to
be known as prior. A fixed number of motions is an incorrect
assumption in real scenarios where the number of motions is
changing over time. Epipolar geometry-based methods [4, 5]
are generally designed for two-frame segmentation, as they
are based on Epipolar constraints of two-perspective-view to
model different motions, and are thereby able to deal with
perspective effects. However, they become invalid when the
object motion is degenerate, such as a moving planar object
or object that performs a pure rotation relative to the camera
centre.

In this paper, we propose a novel motion segmentation
framework that is based on a visual odometry (VO) system
able to identify moving objects in real world scenarios. Our
framework is built upon Epipolar geometry-based methods,
but formulated in a 3D to 2D projective geometry. For that,
we propose a novel motion model of dynamic points in the
scene that can be used in the projection of moving points in
subsequent frames. The motion of each object is then identi-
fied through a combination of the structure flow and instance
level semantic segmentation based on Mask-RCNN [6]. The
proposed method not only can overcome the problem of de-
generate motions (i.e., translation along the camera view), but
also effectively handle the partial occlusions present in real-
life scenarios. The proposed solution ensures a continuous
motion tracking and segmentation across multiple frames.

2 Related Works
2.1 Motion Segmentation
Considering the pros and cons of both affine-based and
Epipolar geometry-based methods, current state-of-the-art al-



gorithms all seek to combine them into a single framework
that leverages their advantages and avoid their weaknesses. Li
et al. [7] propose a multi-frame motion segmentation frame-
work, which combines sparse subspace clustering (SSC) [8]
approach with Epipolar constraints to formulates the segmen-
tation problem as a graph partitioning problem based on an
affinity matrix. To make it applicable in multi-frame case,
an aggregated affinity matrix from multiple frames is derived
to find a joint sparse coefficient recovery across the frames.
Besides that, a robust model selection with outlier rejection
is introduced, by first over-segmenting data into groups, then
merging with loose grouping. More recently, a multi-frame
spectral clustering [9] framework is introduced in [10] with
jointly integration of affine model, homography model and
fundamental matrix. Specifically, affinity matrix is first con-
structed for different models. The affinities between feature
points are then encapsulated in the ORK kernel [11] to han-
dle problems of inlier determination and sampling imbalance,
which are finally fused as subset constraint and integrated into
the spectral clustering problem that can be solved in an alter-
nate optimization pattern. Similar to [7], [12] also construct
the formulation under Epipolar constraint and solve it using
SSC algorithm. The difference is that the latter introduces
semantic affinity matrix and combine it with geometric affin-
ity matrix in the formulation. Making use of semantic infor-
mation helps to deal with issues of indistinguishable motions
and partial occlusion, and as a result increases the segmenta-
tion accuracy. Therefore, the proposed framework leverages
object semantic information to increase the robustness of the
results.

2.2 Scene Flow
Scene flow estimation has been an active research topics in
recent years. Attractive results have been delivered in state-
of-the-art works. Early works, such as [13, 14], denote scene
flow as a vector combining optical flow and disparity. Wedel
et al. [13] proposed to decouple the 3D position and scene
flow estimation separately and estimate dense 3D flow using
a variational approach. In [14], a seed growing algorithm is
presented to jointly and efficiently estimate semi-dense dis-
parity and optical flow. The basic idea of it is that correspon-
dences can be found in a small neighboring region around an
initial set of seed correspondences. In stead of the above de-
notation, [15] introduce a novel representation of the dynamic
3D scene by a collection of piecewise planar, rigidly moving
regions. In this case, the estimation of scene flow includes 3D
position, normal vector and rigid motion of a plane for each
segment, which is formulated as a discrete, non-submodular
energy function and optimized in an alternative way. To im-
prove the efficiency, [16] assumes a fine superpixel segmen-
tation as fixed prior, and proposes a purely continuous factor
graph formulation. This decomposes the problem into pho-
tometric, geometric and smoothing constraints and solves in-
dependently. In the end, a global non-linear refinement is

performed to get an optimal result. Inspired by [15], we try
to group features belonging to different rigid motion mod-
els in dynamic scene, and describe moving objects with cor-
responding models. By doing this, we not just achieve the
goal of motion segmentation, but also modelling the dynamic
scene in a continual and effective fashion.

3 Background Methodology
This section introduces the notation and geometrically formu-
lates the problem of motion segmentation from stereo/ RGB-
D images.

Given a stereo setup, we assume a set of 3D map
points represented in the world coordinate frame {o};
om = {omi ∈ R4| , i = 1, . . . , n}, where n is the total num-
ber of observed 3D points and omi = o[mi
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are the rectified stereo image coordinates of the feature. For
each stereo feature in frame k − 1 we can find its correspon-
dence in the subsequent frame k: kpi ∈ R4. Note that for the
RGB-D setup, we can use the same formulation as stereo but
assuming a preset virtual baseline.

3.1 Camera Pose Estimation
To estimate the camera pose at time k in the world frame
{o}, oTk, we construct an optimization problem. Specifically,
each static landmark omi observed at time k− 1 is projected
onto the image plane k as shown in Figure 1a using the pro-
jection function:

kp̂i = π(kmi) = π(oT−1k
omi) (1)

where π(·) is defined as follows:
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with f the focal length of the cameras , (cu, cv) the principal
point (assuming both cameras have the same focal length and
principal point) and b is the baseline of the stereo system.

Finally, oTk is found by minimizing the following re-
projection error for all the visible static points {i ∈ 1 . . . ns}
in frame k:

oT ∗k = argmin
oTk

ns∑
i=1

||kpi − kp̂i||2 (3)

The optimal result is obtained using Levenberg-Marquardt
optimization. The ego-motion is obtained from:

k−1
k−1Tk = oT−1k−1

oTk (4)

To be robust against outliers, we wrap the above estimation
into a RANSAC model fitting framework.



(a) Ego motion. (b) Structure flow. (c) Motion of dynamic point.

Figure 1: Coordinate frames, points and motion.

3.2 Sparse Structure Flow
The location of a static 3D point in the scene should always
remain the same in the reference frame {o}. For points on
moving objects, their absolute location changes with time.
Figure 1b shows an example of a 3D point on a moving ob-
ject at two time steps: mi

k−1 and mi
k. In order to describe

the motion, in the following derivations we introduce the time
step in our notation as a right subindex.

In a stereo set-up, the scene flow is defined as a vector
combining optical flow and disparity, and has been used in
the literature in the context of motion segmentation. In or-
der to overcome the problem of degenerate motions, in this
paper we define the structure flow as the 3D motion field of
a scene, seen as a displacement vector of each surface point.
The structure flow vector associated to the ith 3D point is
computed as a difference of the two vectors:

k−1f
i
k = omi

k − omi
k−1 (5)

For static 3D points the structure flow vector should be close
to zero.

3.3 Motion Model of Points on a Rigid Body
In this section we derive the motion model of a point on a
rigid body. We assume that the rigid body transformation of
an object in motion from time k − 1 to time k is given by
k−1
k−1Hk ∈ SE(3) and it is represented in the coordinate frame
of the object at time k − 1. If the pose of the object at time
k − 1 is given by oLk−1 ∈ SE(3) in the reference frame o,
according to Chirikjian et al. [17], the frame change of the
object pose transformation is given by:

o
k−1Hk =o Lk−1

k−1
k−1Hk

oL−1k−1 ∈ SE(3) (6)

According to [18], the motion of a point on a rigid body can
be expressed using the rigid body pose transformation in in-
ertial frame given by o

k−1Hk, with the following relation:
omi

k = o
k−1Hk

omi
k−1 (7)

If a point at time k in the camera coordinates is given by
kmi

k = oT−1k
omi

k and using (7), we obtain:
kmi

k = oT−1k
o
k−1Hk

omi
k−1 (8)

Given a set of image features corresponding to moving points
on a rigid body {i ∈ 1 . . . nd}, the motion of the points on
the rigid body o

k−1Hk can be estimated by minimizing the
following re-projection error:

o
k−1H

∗
k = argmin

o
k−1Hk

nd∑
i=1

||kpi
k − π(oT−1k

o
k−1Hk

omi
k−1)||2

(9)
where oTk is known and obtained using (3). In prac-
tice, it is convenient to estimate for the transformation
kRk = oT−1k

o
k−1Hk ∈ SE(3) and recover the motion after-

wards.
This novel formulation allows modelling the motion of all

the points pertaining to the same object by an SE(3) transfor-
mation that can be estimated in the same way as ego-motion.

4 Implementation
Our proposed method of motion segmentation is embedded
in a Visual Odometry framework, in which the ego-motion of
camera and object motions estimation can benefit from a good
feature points tracking and at the same time, the tracking can
benefit from better estimation of those motions. The proposed
pipeline is summarized in Figure 2. In the pipeline illustra-
tion, Sm refers to semantic mask of the image and L means
labels to the features obtained after the classification. Note
that L contains 3 types of labels: dynamic objects (1, 2, ...),
static (0) and outliers (−1).

4.1 Ego-motion Estimation
The goal of visual odometry is to incrementally estimate the
motion of a camera/robot (ego-motion) from visual informa-
tion of the environment. To achieve this, salient features on
each new image frame are first detected, and discriminative
descriptors are matchesextracted. SIFT [19] technique is cho-
sen in our implementation, due to its powerful discrimination
and strong invariance to scale, rotation, illumination change
and noise.

After the feature extraction is done, correspondences with
the previous frame are found. In this paper, an effec-
tive matching approach based on motion prior is intro-



Figure 2: The proposed system composes by two main
blocks: the ego-motion estimation and the motion segmenta-
tion. Letters in red color refer to output for each small blocks.

Figure 3: Comparison of matching result with and without
motion priors in sequence 0001 of virtual KITTI dataset. The
blue arrows with red points on the sedan are projection of the
structure flow vectors.

duced to tackle this problem. As illustrated in Algorithm 1,
assuming we have an initial estimate of the ego-motion
k−1
k−1T̃k = k−2

k−2Tk−1 and object motions o
k−1H̃

j
k =o

k−2 Hj
k−1

for each individual jth object, the features can be categorised
in three groups: static, dynamic and unknown. Note that the
initial estimates can be obtained by assuming constant mo-
tion models of the camera and objects in the scene. For the
static or dynamic features, their correspondences in the cur-
rent frame are searched by first projecting their 3D map point
into the current frame, using camera motion model (static) or
object motion model (dynamic) together with intrinsic param-
eters, and then performing a local search (Slo) by comparing
descriptor distance (Ddist).

The static/dynamic labels (motion models) are propagated
through feature matching process. In order to keep a high
number of features to track, we also consider the features that
have not yet been assigned a motion model. For those, we
perform a neighbourhood search in order to obtain the ade-
quate motion model to be used in the matching process. For
each candidate feature, its topK nearest neighbours sorted by
Euclidean distance are obtained. The distance matrix is pre-
computed using FLANN [20]. The K nearest neighbours are

Algorithm 1 Feature Matching via Multiple Motion Mod-
els
Require:

1: omk−1 = {omi
k−1, i = 1, ..., nk−1} and pk =

{pj
k, j = 1, ..., nk}: map points in frame k − 1 and fea-

tures in frame k;
2: oT̃k and o

k−1H̃k = {ok−1H̃i
k, i = 1, ...,m}: ego-motion

and dynamic points motion of m objects in frame k;
Ensure: M t

k−1,k = {{mi
k−1,p

i
k}, i = 1, ..., nt} : Tempo-

ral matches between k − 1 and k frames;
3: for each omi

k−1 ∈ omk−1 do
4: if omi

k−1 is static, then
5: p̂i

k = π(oT̃−1k
omi

k−1);
6: else if omi

k−1 is dynamic, then
7: p̂i

k = π(oT̃−1k
o
k−1H̃

i
k

omi
k−1);

8: end if
9: plo = Slo{pk};

10: ∗pk={pj
k ∈ plo |Ddist(p̂

i
k,p

j
k) is min};

11: M t
k−1,k ← {omi

k−1,
∗pk};

12: end for
13: return M t

k−1,k ;

thresholded within a reasonable distance. Furthermore, the
algorithm checks the ratio between the first and the second
neighbour in the list. If this ratio is larger than a threshold, the
motion of the first candidate is assigned to the feature. Other-
wise, the algorithm assign the motion model with the highest
occurrence within the thresholded K nearest neighbours. For
the initialisation of the first two frames, we simply performe
a wider but fixed radius search to find the correspondences.

Figure 3 illustrates a comparison of matching result with
and without motion priors in a short clip, where the silver
sedan is passing by the agent car. As the sedan is coming
closer, the matching without motion priors fails to find any
correspondence, while the other still keeps track on the sedan.

The 3D static landmarks in the previous frame and their as-
sociated 2D features in the current frame are used to calculate
the ego-motion as described in section 3.1.

4.2 Motion Segmentation
In many applications ego-motion is used to separate fore-
ground features from the background using a RANSAC ap-
proach. But ego-motion can be very imprecise and features
on moving objects have high possibility to be selected as
background points. Therefore, in our pipeline, the magni-
tudes of the structure flow vectors are used as a motion cue
to decide whether a certain feature is static or dynamic. For
all the matched pairs between previous and current frame,
their 3D structure flow vectors are computed as described in
section 3.2. This strategy avoids relying only on the ego-
motion to separate the points on dynamic objects from the
background points. Figure 4 shows how the result is greatly
improved, the top figure shows that all the features on the



Figure 4: Sample frame from sequence 0004 in KITTI
Dataset, showing foreground extraction using structure flow
(upper) or inliers/outliers threshold after Ego-motion estima-
tion (bottom). Yellow circles refer to background and red
foreground.

moving objects are labeled as dynamic (red color) whereas
the bottom figure shows features on the moving vehicles are
mostly recognised as static (yellow colour) when only using
ego-motion.

Moreover, depending only on the structure flow to identify
dynamic features is not reliable enough, outliers can also have
large flow values. As is indicated in Figure 5 (top), outliers
are commonly distributed on the background scene. There-
fore we propose the use of semantic labelling produced by
MASK R-CNN [6] to help accomplish motion segmentation.
Concretely, the model of MASK R-CNN is pre-trained on
the COCO dataset [21], and it is directly applied to segment
objects in our pipeline without fine-tuning. We select a set of
object classes that can possibly be in motion (e.g. cars, trucks,
bicycles, pedestrians, etc.), and only threshold the flow vector
of points pertaining to objects in those classes. In this case,
dynamic features are clustered based on different objects they
belong to. This combination is straightforward but very ef-
fective in obtaining good segmentation results. Figure 5 (bot-
tom) shows the satisfactory result after combination.

The last step of the pipeline estimate the motions of the
points on the moving objects using the re-projection error de-
scribed in section 3.3. A RANSAC approach is used to elim-
inate the outliers of each motion model present in the scene.
In order to insure a large number of features tracked on mov-
ing objects, the technique make use of the instance level seg-
mentation to propagate the motion models (labels) to all the
features detected on the segmented objects. This approach is
based on the fact that instance level segmentation has high ac-
curacy, and imperfections of this will not drastically affect the
real applications. Note that the motion models are calculated
only using valid points. The resulting motions are then used
to predict the correspondences in the next frame and insure a
robust tracking of the points.

Figure 5: Sample frame from sequence 0004 in KITTI
Dataset, demonstrating projection (blue arrows) of structural
flow vector distribution before (upper) and after (bottom)
combining semantic labeling.

5 Experimental Results
To show the effectiveness of our proposed algorithm,
we first quantitatively evaluate it on the virtual KITTI
dataset [22](vKITTI, RGB-D), which provides the ground
truth labeling of moving objects. Then we demonstrate
qualitative results by testing the pipeline on the KITTI
dataset [23](KITTI, stereo) using MASK R-CNN segmenta-
tion. For both datasets, 3000 SIFT features are detected per
frame (each image in stereo data). As ground truth depth is
provided in vKITTI, we add Gaussian noise with variance of
0.04 meters, which is a normal measuring error in most com-
mercial depth sensors. The processing time of our proposed
system is around 0.24 second per frame on average when run
on an i7 quad-core 2.5Ghz laptop. Note that the semantic seg-
mentation part is performed off-line using MASK R-CNN.

5.1 Quantitative Study
Virtual KITTI dataset includes 5 image sequences. From each
of the sequences, we only test a selected short clip, which
contains multiple moving objects. The motion segmentation
results are evaluated using a Classification Error (ce) for each
frame, which is defined as the proportion of misclassified fea-
tures (fm) among the total number of features (ft):

ce = 100%× fm
ft

(10)

The total classification error is in fact a combination of
three errors: false positive error (F/P), false negative error
(F/N) and not-detected error (N/D). False positive error refers
to classifying features as foreground but they are actually on
the background or outliers, while false negative error refers
to classifying features as background or wrong object when
they are actually a different moving object. Not-detected er-
ror means the error of certain moving objects not being de-
tected in the scene. In this case, all the detected features on



Figure 6: Distribution of object detection number and N/D er-
ror across frames of sequence 0001 in virtual KITTI Dataset.

the corresponding objects are counted into error.
Table. 1 shows the average value of the above four error

metrics, as well as re-projection error (R/P), as obtained us-
ing the computed motion models of each moving object. The
number of motions means the total number of moving ob-
jects that appear in the specific number of frames of the corre-
sponding sequence. We can see that, the total error is mainly
contributed by the not-detected error. This is reasonable, as
it is difficult to keep continuous feature tracks on the mov-
ing objects due to distance, view or light condition change,
occlusion, etc. For instance, Figure 6 demonstrates object de-
tection number against total number and N/D error distribu-
tion across frames. It can be seen that one vehicle appears in
the scene for 12 frames, but it is only been detected between
frame 4 − 7 due to the cover of tree shadow (light change).
In frame 26, another vehicle is about disappearing and only
a small part of it is shown in the scene, therefore the sys-
tem fails to detect it. When the moving vehicles are distant
from the agent vehicle motion is hard to be detected. For
that reason, sequence 0200 performs poorly. As shown in
Figure 7, most of the moving cars are further in the scene.
The proposed system is able to accurately handle situations
where the moving objects are relatively close to the moving
camera, those situations being of high interest in real applica-
tions. Handling distant objects can be achieved by integrating
the result of the proposed pipeline into a multi-body SLAM
algorithm, and this will constitute our future work. Note that
the R/P error in 0200 is zero, because R/P is only computed
on the moving features, and when an object is detected, only
a few features (say 4) are detected on certain object. In this
case all these features have high probability of being recog-
nized as inliers when estimating the motion model. Similarly,
the F/P and F/N errors are both zeros, as only one object is
detected in this sequence and all the features on this moving
object are correctly classified.

5.2 Qualitative Study
For the real KITTI dataset, similarly to vKITTI, only short
clips with multiple moving objects are tested in our experi-
ments. Here we select several challenging situations for il-
lustration. For instance, Figure 8 shows a segmentation result

Figure 7: Sample frame from sequence 0020 in virtual KITTI
Dataset, where most of the frames contain small size objects
(highlighted by bounding boxes) in the scene. This increases
the difficulty in detecting features in the objects.

Figure 8: Segmentation result of strong perspective scene
with occlusion. Sample frame from sequence 0004 in KITTI
Dataset.

of a crossroad, where the scene has strong perspective view.
Besides that, there are several vehicles crossing, and some of
them are intersected with occlusions. Despite that, the pro-
posed algorithm can still overcome these challenges and de-
liver a satisfactory segmentation result.

Another example of difficult detection and recovery of the
motion is when the scene contains degenerate motions, such
as objects moving on the Epipolar plane. This situation is
very frequent in real scenarios, e.g. following the car ahead
on the road, as can be seen in Figure 9. The result indicates
that the proposed method is still able to detect and segment
this type of motion consistently, and continuously track the
object across frames.

6 Conclusions
In this paper, we introduced a robust and effective system that
can simultaneously detect, segment and track rigid moving
objects in multiple frames. The proposed system is able to
deal with real challenging scenarios with strong perspective,
occlusion and degenerate motion. Experimental results indi-
cate that our system helps to achieve excellent performance
in segmenting and tracking motions in urban scene and ob-
tain satisfactory results in the virtual KITTI dataset, as well
as the real KITTI dataset.

Nevertheless, there are problems that remain to be solved.
One of them is how to improve the feature tracking ability
on moving objects consistently over frames, which ensures
the continuous tracking of objects. This is an unavoidable
challenge in real scenes due to light condition change and
occlusion. As mentioned before, we plan to integrate the
proposed motion segmentation technique into a multi-body



Table 1: AVERAGE MISCLASSIFICATION RATE AND REPROJECTION ERROR FOR THE SEQUENCES FROM THE
VIRTUAL KITTI DATASET.

Sequence Total Error F/P Error F/N Error N/D Error R/P Error Num of Motions Num of Frames

0001 6.2214% 0.0362% 0.7089% 5.4762% 0.7285 3 42

0002 21.0520% 0.1933% 4.3047% 16.5540% 0.6262 5 51

0006 14.0884% 0.0000% 0.9996% 13.0889% 0.5523 6 40

0018 14.1468% 0.1035% 0.0763% 13.9669% 0.5843 4 43

0020 44.7693% 0.0000% 0.0000% 44.7693% 0.0000 3 56

Figure 9: Example of difficult to be detected degenerate mo-
tion, which is marked in the green bounding box. Sample
frame from sequence 0004 in KITTI Dataset.

SLAM system able to localise the agent camera, track the
moving objects and build a dynamic map of the environment.
The final solution will aim to improve robustness in situations
including distant objects, occlusions, degenerate motions and
continuous tracking.
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